• English
  • Español
  • Русский
  • 中文

Mesenchymal Stem Cells Treatment

Mesenchymal stem cells overview

Mesenchymal stem cells (MSCs) are progenitor cells, meaning they are cells that can differentiate and become other cells. In fact, they are the cells from which all other cells are derived. They are found in many adult tissues including the bone marrow, fat, synovium (joint lining), teeth, skin bone, and cartilage. Our preferred source of MSCs is umbilical cord tissue due to he universal donor status of these cells and the young powerful regenerative ability of this source.

What makes MSCs unique is that when they’re cultured outside the body, they multiply quickly but don’t differentiate into anything specific until a unique stimulus is applied. What that means is that by culturing these cells, a large number of them can be grown in a relatively short period. The therapeutic and regenerative potential is obvious.

Mesenchymal stem cells are grouped between the term “multipotent” and the term “pluripotent.” The MSCs have the ability to produce a range of secretions such as growth factors, and poses the ability to differentiate into many different cell types.

Embryonic stem cells (we do not use)

Embryonic stem cells are obtained from the fetus. Embryonic stem cells are “pluripotent” that is to say they can differentiate into virtually any type of cell. While this makes them almost ideal for tissue repair, there are potential problems. The first important issue is an ethical one that is still being debated in many quarters. The second is that while their power to differentiate is unquestioned, the ability to turn them off at the right time may be a reason for concern. We do not use embryonic stem cells at our facilities.

Adult mesenchymal stem cells

Adult MSCs can differentiate into various types of tissue which make them valuable as a potential source of regenerative tissue for the treatment of conditions such as arthritis, degenerative disease and injuries.
In fact, adult MSCs are often referred to as “repair stem cells”.

Early passage MSCs also hold an immune modulation ability which make them our preferred type of stem cell for immune disorders, inflammatory disease and anti-aging programs.

StemCells21 medical team work on the various factors that cause MSCs to home in different areas of disease and damage.
Small proteins called chemokines apparently attract mesenchymal stem cells because these cells have receptors for chemokines on their surface. When a tissue is damaged or diseased, there is a release of chemokines which then travel via the bloodstream. When these chemokines attach to receptors on the surface of MSCs, they cause the stem cells to migrate to the site of injury.

Also, other substances, called adhesion molecules, also present on the surface of MSCs play a role in cell migration to an area of injury.

Key Points in the Use of Mesenchymal Stem Cells

  1. Maintain the Youthful Qualities of the Stem Cells: to achieve a therapeutic number of stem cells all laboratories put the unexpanded population of MSCs (passage 0) into culture to increase their numbers. However, when the stem cells double in numbers many times they begin to loose their abilities and in a way age. At our laboratory we restrict the number of doublings to have a limited of 8 to 10 times. Many laboratories or treatment providers will allow a doubling ratio of well over 30 time to obtain higher numbers of cells, as many treatments are sold per million basis. The over expanded cells loose their abilities such as growth factor production levels and become unable to repopulate in-vivo.
  2. Administration/Injection Routes: A combination approach is recommended giving cells intravenously for systemic delivery and locally via injections which can include: intramuscular, intra-articular, intra-dermal, lumbar puncture (into CNS), intranasal.
  3. Stimulation of Stem Cells: there are various ways to direct or stimulate stem cells towards a certain fate. These mechanisms include: mRNA molecule injections, laser stimulation with specific wavelengths (red, green, blue, yellow, IR) and nutrition/amino-acids.

How do stem cells actually work?

The most commonly known role of stem cells is their ability to develop into different organs cells but they also have other properties that can be very important for healing. Stem cells produce over 30 kinds of growth factors and tissue chemicals that initiate the healing process in the body. Stem cells help assemble other local and systemic mesenchymal stem cells to focus on repairing damaged tissue and organs. They are also active in immune modulation to support or suppress T-cell work in the body.

Stem cells are stimulated to travel into an area by signals from the organ depending on chemical, neural, and mechanical properties.
Under ideal conditions mesenchymal stem cells would respond to damages and healing would occur. Factors that affect stem cell response include fitness of the patient, age, and the level of free radicals in the body.

Applications Of mesenchymal stem cells

Serious disorders such as heart and lung disease, high blood pressure, spinal and neurological injuries, diabetes type 1 and 2, adult macular degeneration of the eye, Parkinson’s disease, osteoporosis, are just some of the stem cell therapy applications that have already been employed, and in many cases, with dramatic results.
Research has also shown that stem cells can be used to manage aging in individuals and make them appear younger.

Mesenchymal stem cells play a vital role in regenerative stem cell therapy of many degenerative and life threatening conditions.
They have a wide range of potential therapeutic applications.

Roles played by various stem cells:

Cardio Myocytes

Aid to repair damaged cardiac tissue following a heart attack. Cardio myocytes have been used to control many threatening heart conditions.

Neuronal

Generate nerve and brain tissue.They very essential in neurosurgery.

Myocytes

Repair muscle tissue. They can also be used to control various types of arthritis.

Osteocytes

They can generate bone.

Chondrocytes

They can generate cartilage, which would have an important role in the treatment of arthritis and joint injuries.

Adipocytes

Generate fat tissue.

 

bangkok stem cells clinic

StemCells21 passage 1 mesenchymal stem cells (MSCs)

passage number is the number of times a cell culture has been subcultured. This means that when we initially extract the MSCs from the umbilical cord tissue we have a starting population of stem cells called passage 0 (P0). These P0 cells are then placed into culture to expand their numbers which is a sub culture. The first sub culture is called passage 1 (P1) and we would generally expect the cells to have a 6 to 8 doubling rate inside this P1 culture.

mesenchymal stem cells, msc therapy, mesenchymal stem cell therapy, msc treatment, mesenchymal stem cells, msc treatment, msc stem cells, mesenchymal stem cell therapy, mesenchymal stem cells treatment, msc treatment, cord msc, stem cells from cord tissue,

P1 MSC analysis reportsstem cell viability, mesenchymal stem cell lab, stem cells asia, msc research,

All batches of P1 MSCs are tested for their phenotyping and viability. The CD system is commonly used as cell markers in immunophenotyping, allowing cells to be defined based on what molecules are present on their surface. Mesenchymal stem cells have a distinct set of surface markers which is used for their identification and quality control. Cell viability means the health of the cells. For stem cell therapies, it’s critical that the stem cells you’re receiving are viable (healthy).

stem cell markers, young stem cells, msc therapy, msc surface markers, stem cell analysis, stemcells21,

 

Share StemCells21